Data Structures and Algorithms

Binary Search Tree

8 months, 3 weeks ago ; F(visit_count) + Value(1) views
Share this

A binary search tree is a hierarchical data structure that allows for efficient insertion, deletion, and searching of elements.

The solution below defines a Binary Search Tree (BST) class and its methods to insert, search, and remove nodes from the tree.

At the core of it is the BST property: values less than the current node's value go to the left, and values greater than or equal to the current node's value go to the right.


What Problem is being Solved?

The BST class is solving the problem of creating and managing a binary search tree data structure.

class BST:
	def __init__(self, value):
		self.value = value
		self.left  = None
		self.right = None
		
	# Average: O(log(n)) time | O(1) space
	# Worst: O(n) time | O(1) space
	def insert(self, value):
		currentNode = self
		while True:
			if value < currentNode.value:
				if currentNode.left is None:
					currentNode.left =BST(value)
					break
				else:
					currentNode = currentNode.left
			else:
				if currentNode.right is None:
					currentNode.right =BST(value)
					break
				else:
					currentNode= currentNode.right
		return self
	# Average: O(log(n)) time | O(1) space
	# Worst: O(n) time | O(1) space
	def contains(self, value):
		currentNode=self
		while currentNode is not None:
			if value < currentNode.value:
				currentNode = currentNode.left
			elif value > currentNode.value:
				currentNode = currentNode.right
			else:
				return True
		return False
	
	# Average: O(log(n)) time | O(1) space
	# Worst: O(n) time | O(1) space
	def remove(self, value, parentNode=None):
		currentNode =self
		while currentNode is not None:
			if value < currentNode.value:
				parentNode =currentNode
				currentNode =currentNode.left
			elif value > currentNode.value:
				parentNode = currentNode
				currentNode =currentNode.right
			else:
				if currentNode.left is not None and currentNode.right is not None:
					currentNode.value =currentNode.getMinValue()
					currentNode.right.remove(currentNode.value, currentNode)
				elif parentNode is None:
					if currentNode.left is not None:
						currentNode.value = currentNode.left.value
						currentNode.right = currentNode.left.right
						currentNode.left  = currentNode.left.left
					elif currentNode.right is not None:
						currentNode.value = currentNode.right.value
						currentNode.left  = currentNode.right.left
						currentNode.right = currentNode.right.right
					else:
						currentNode.value =None
				elif parentNode.left == currentNode:
					parentNode.left = currentNode.left if currentNode.left is not None else currentNode.right
				elif parentNode.right == currentNode:
					parentNode.right = currentNode.left if currentNode.left is not None else currentNode.right
				break
		return self

	def getMinValue(self):
		currentNode =self
		while currentNode.left is not None:
			currentNode =currentNode.left
		return currentNode.value

Solution Overview

Here's a breakdown of the solution.

__init__ method

The __init__() method Initializes a new instance of the BST class with a given value. By default, the left and right children of the node are set to None.

insert method

Inserts a new node with the given value into the BST while maintaining the BST property.

contains method

Searches for a given value in the BST. Returns True if the value is found in the tree, False otherwise.

remove method

The remove() method is responsible for removing a node with the given value from the BST while maintaining the BST property.

It handles various cases some of which include:

  • removing a node with no children, one child, or two children.
  • It ensures that the resulting tree remains a valid BST.

getMinValue method

It is a helper method for finding the minimum value in the subtree rooted at the current node. This method is called when removing a node with two children.

Time Complexity: Insertion, Searching, and Removal:

Average Case: O(log(n)) time complexity, where n is the number of nodes in the BST. This is because on average, each operation reduces the search space by half.

Worst Case: O(n) time complexity, which occurs when the tree is unbalanced, resembling a linear linked list.

Space Complexity

All methods have an average and worst-case space complexity of O(1), as they operate without requiring additional space proportional to the size of the tree.

Unit Tests

These tests cover various scenarios including:

  •     Insertion of a new node.
  •     Checking if a value is present in the BST.
  •     Removing a leaf node.
  •     Removing a node with one child.
  •     Removing a node with two children.
  •     Testing the getMinValue helper method.
import unittest
class TestBST(unittest.TestCase):
    def setUp(self):
        # Create a BST for testing
        self.bst = BST(10)
        self.bst.insert(5)
        self.bst.insert(15)
        self.bst.insert(2)
        self.bst.insert(7)
        self.bst.insert(12)
        self.bst.insert(17)

    def test_insert(self):
        # Test insertion of a new node
        self.bst.insert(20)
        self.assertTrue(self.bst.contains(20))

    def test_contains(self):
        # Test contains method for existing and non-existing values
        self.assertTrue(self.bst.contains(7))
        self.assertFalse(self.bst.contains(8))

    def test_remove_leaf_node(self):
        # Test removal of a leaf node
        self.bst.remove(2)
        self.assertFalse(self.bst.contains(2))

    def test_remove_node_with_one_child(self):
        # Test removal of a node with one child
        self.bst.remove(15)
        self.assertFalse(self.bst.contains(15))
        self.assertTrue(self.bst.contains(17))

    def test_remove_node_with_two_children(self):
        # Test removal of a node with two children
        self.bst.remove(15)
        self.assertFalse(self.bst.contains(15))
        self.assertTrue(self.bst.contains(12))
        self.assertTrue(self.bst.contains(17))

    def test_get_min_value(self):
        # Test getMinValue method
        min_value = self.bst.getMinValue()
        self.assertEqual(min_value, 2)

if __name__ == '__main__':
    unittest.main()

 

Use Cases

The BST data structure is commonly used in applications requiring efficient searching, such as databases, binary search, and data indexing

Become a member
Get the latest news right in your inbox. We never spam!

Read next

Practical Applications of Derangements

Practical Applications of Derangements in Real-World Coding Derangements are a very common concept … Read More

Kibsoft 1 week, 3 days ago . 46 views